Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(5): 958-968.e5, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38335960

RESUMO

Subzero temperatures are often lethal to plants. Many temperate herbaceous plants have a cold acclimation mechanism that allows them to sense a drop in temperature and prepare for freezing stress through accumulation of soluble sugars and cryoprotective proteins. As ice formation primarily occurs in the apoplast (the cell wall space), cell wall functional properties are important for plant freezing tolerance. Although previous studies have shown that the amounts of constituent sugars of the cell wall, in particular those of pectic polysaccharides, are altered by cold acclimation, the significance of this change during cold acclimation has not been clarified. We found that ß-1,4-galactan, which forms neutral side chains of the acidic pectic rhamnogalacturonan-I, accumulates in the cell walls of Arabidopsis and various freezing-tolerant vegetables during cold acclimation. The gals1 gals2 gals3 triple mutant, which has reduced ß-1,4-galactan in the cell wall, exhibited impaired freezing tolerance compared with wild-type Arabidopsis during initial stages of cold acclimation. Expression of genes involved in the galactan biosynthesis pathway, such as galactan synthases and UDP-glucose 4-epimerases, was induced during cold acclimation in Arabidopsis, explaining the galactan accumulation. Cold acclimation resulted in a decrease in extensibility and an increase in rigidity of the cell wall in the wild type, whereas these changes were not observed in the gals1 gals2 gals3 triple mutant. These results indicate that the accumulation of pectic ß-1,4-galactan contributes to acquired freezing tolerance by cold acclimation, likely via changes in cell wall mechanical properties.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Congelamento , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Parede Celular/metabolismo , Galactanos/metabolismo , Aclimatação/genética , Açúcares/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas
2.
Plant Cell Physiol ; 64(11): 1356-1371, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37718531

RESUMO

The interdigitated pavement cell shape is suggested to be mechanically rational at both the cellular and tissue levels, but the biological significance of the cell shape is not fully understood. In this study, we explored the potential importance of the jigsaw puzzle-like cell shape for cotyledon morphogenesis in Arabidopsis. We used a transgenic line overexpressing a Rho-like GTPase-interacting protein, ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN 1 (RIC1), which causes simple elongation of pavement cells. Computer-assisted microscopic analyses, including virtual reality observation, revealed that RIC1 overexpression resulted in abnormal cotyledon shapes with marginal protrusions, suggesting that the abnormal organ shape might be explained by changes in the pavement cell shape. Microscopic, biochemical and mechanical observations indicated that the pavement cell deformation might be due to reduction in the cell wall cellulose content with alteration of cortical microtubule organization. To examine our hypothesis that simple elongation of pavement cells leads to an abnormal shape with marginal protrusion of the cotyledon, we developed a mathematical model that examines the impact of planar cell growth geometry on the morphogenesis of the organ that is an assemblage of the cells. Computer simulations supported experimental observations that elongated pavement cells resulted in an irregular cotyledon shape, suggesting that marginal protrusions were due to local growth variation possibly caused by stochastic bias in the direction of cell elongation cannot be explained only by polarity-based cell elongation, but that an organ-level regulatory mechanism is required.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Forma Celular , Cotilédone/genética , Cotilédone/metabolismo , Microtúbulos/metabolismo , Folhas de Planta/metabolismo
3.
Plants (Basel) ; 12(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765437

RESUMO

The present study provides new insights into the growth of the brown algal cell wall by showing that cell wall polysaccharides play an important role in the process of growth, considering the physicochemical characteristic of young and old Cladosiphon okamuranus. To determine its structural variation in detail, the cell wall was sequentially fractionated into five fractions: hot water (HW), ammonium oxalate, hemicellulose-I (HC-I), HC-II, and cellulose, and analyzed physicochemically. Results showed that almost 80% of the total recovery cell wall from both young and old thalli was HW, and HC-I contained mainly fucoidan composed of Fucose, Glucuronic acid, and sulfate in molar ratios of 1.0:0.3:0.6~0.7 and 1.0:0.3:0.2~0.3, respectively. Fucoidan in HW was a highly sulfated matrix polysaccharide abundance in young thalli, while fucoidan in HC-I was rich in old thalli and functions as hemicellulose in land plants, crosslinking with cellulose and strengthening the cell wall. We found that HW and HC-I were particularly involved in the growth and strength of old thalli appeared to be due to the deposition of HC-I and the reduction in water content during the growth process.

4.
Life Sci Space Res (Amst) ; 38: 53-58, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37481308

RESUMO

Sterols are the main components of the plasma membrane and are involved in various plant membrane functions. Azuki bean (Vigna angularis (Wild.) Ohwi et Ohashi) seedlings were cultivated under hypergravity conditions, and changes in the levels and composition of membrane sterols in their epicotyls were analyzed. Under hypergravity conditions at 300 g, the levels of steryl glycosides and acyl steryl glycosides per unit length and per gram fresh weight greatly increased, which accounted for an increase in the total sterol levels. Stigmasterol, ß-sitosterol, and campesterol were the most abundant sterols. Hypergravity decreased the proportion of stigmasterol but increased that of ß-sitosterol. The fatty chains of acyl steryl glycosides mainly consisted of palmitic acid (C16:0), stearic acid (C18:0), linoleic acid (C18:2), and α-linolenic acid (C18:3), and their proportions were not modified under hypergravity conditions. In addition, the density of membrane microdomains, visualized with anti-Flotillin 1 antibody per unit area, increased by hypergravity, suggesting that lipid raft formation was stimulated. These results support the hypothesis that lipid rafts are involved in plant response and resistance to gravity.


Assuntos
Hipergravidade , Vigna , Glicosídeos , Estigmasterol , Esteróis , Microdomínios da Membrana
5.
Life (Basel) ; 13(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36836828

RESUMO

Lead (Pb) is a widespread heavy metal pollutant that interferes with plant growth. In this study, we investigated the effects of Pb on the mechanical and chemical properties of cell walls and on the growth of coleoptiles of rice (Oryza sativa L.) seedlings grown in the air (on moistened filter paper) and underwater (submerged condition). Coleoptile growth of air-grown seedlings was reduced by 40% by the 3 mM Pb treatment, while that of water-grown ones was reduced by 50% by the 0.5 mM Pb. Although the effective concentration of Pb for growth inhibition of air-grown coleoptiles was much higher than that of water-grown ones, Pb treatment significantly decreased the mechanical extensibility of the cell wall in air- and water-grown coleoptiles, when it inhibited their growth. Among the chemical components of coleoptile cell walls, the amounts of cell wall polysaccharides per unit fresh weight and unit length of coleoptile, which represent the thickness of the cell wall, were significantly increased in response to the Pb treatment (3 mM and 0.5 mM Pb for air- and water-grown seedlings, respectively), while the levels of cell wall-bound diferulic acids (DFAs) and ferulic acids (FAs) slightly decreased. These results indicate that Pb treatment increased the thickness of the cell wall but not the phenolic acid-mediated cross-linking structures within the cell wall in air- and water-grown coleoptiles. The Pb-induced cell wall thickening probably causes the mechanical stiffening of the cell wall and thus decreases cell wall extensibility. Such modifications of cell wall properties may be associated with the inhibition of coleoptile growth. The results of this study provide a new finding that Pb-induced cell wall remodeling contributes to the regulation of plant growth under Pb stress conditions via the modification of the mechanical property of the cell wall.

6.
Plants (Basel) ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679078

RESUMO

The exogenous application of ethylene or 1-aminocyclopropane-1-carboxylic acid (ACC), the biosynthetic precursor for ethylene, to plants decreases the capacity of the cell wall to extend, thereby inhibiting stem elongation. In this study, the mechanism by which the extensibility of cell walls decreases in ACC-treated azuki bean epicotyls was studied. ACC decreased the total extensibility of cell walls, and such a decrease was due to the decrease in irreversible extensibility. ACC increased the molecular mass of xyloglucans but decreased the activity of xyloglucan-degrading enzymes. The expression of VaXTHS4, which only exhibits hydrolase activity toward xyloglucans, was downregulated by ACC treatment, whereas that of VaXTH1 or VaXTH2, which exhibits only transglucosylase activity toward xyloglucans, was not affected by ACC treatment. The suppression of xyloglucan-degrading activity by downregulating VaXTHS4 expression may be responsible for the increase in the molecular mass of xyloglucan. Our results suggest that the modification of xyloglucan metabolism is necessary to decrease cell wall extensibility, thereby inhibiting the elongation growth of epicotyls in ACC-treated azuki bean seedlings.

7.
Front Plant Sci ; 13: 1010492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438144

RESUMO

Arabinogalactan-proteins (AGPs) are mysterious extracellular glycoproteins in plants. Although AGPs are highly conserved, their molecular functions remain obscure. The physiological importance of AGPs has been extensively demonstrated with ß-Yariv reagent, which specifically binds to AGPs and upon introduction into cells, causes various deleterious effects including growth inhibition and programmed cell death. However, structural features of AGPs that determine their functions have not been identified with ß-Yariv reagent. It is known that AGPs are decorated with large type II arabinogalactans (AGs), which are necessary for their functions. Type II AGs consist of a ß-1,3-galactan main chain and ß-1,6-galactan side chains with auxiliary sugar residues such as L-arabinose and 4-O-methyl-glucuronic acid. While most side chains are short, long side chains such as ß-1,6-galactohexaose (ß-1,6-Gal6) also exist in type II AGs. To gain insight into the structures important for AGP functions, in vivo structural modification of ß-1,6-galactan side chains was performed in Arabidopsis. We generated transgenic Arabidopsis plants expressing a fungal endo-ß-1,6-galactanase, Tv6GAL, that degrades long side chains specifically under the control of dexamethasone (Dex). Two of 6 transgenic lines obtained showed more than 40 times activity of endo-ß-1,6-galactanase when treated with Dex. Structural analysis indicated that long side chains such as ß-1,6-Gal5 and ß-1,6-Gal6 were significantly reduced compared to wild-type plants. Tv6GAL induction caused retarded growth of seedlings, which had a reduced amount of cellulose in cell walls. These results suggest that long ß-1,6-galactan side chains are necessary for normal cellulose synthesis and/or deposition as their defect affects cell growth in plants.

8.
Life (Basel) ; 12(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36295039

RESUMO

Terrestrial plants respond to and resist gravitational force. The response is termed "gravity resistance", and centrifugal hypergravity conditions are efficient for investigating its nature and mechanism. A functional screening of Arabidopsis T-DNA insertion lines for the suppression rate of elongation growth of hypocotyls under hypergravity conditions was performed in this study to identify the genes required for gravity resistance. As a result, we identified PEPTIDYL-tRNA HYDROLASE II (PTH2). In the wild type, elongation growth was suppressed by hypergravity, but this did not happen in the pth2 mutant. Lateral growth, dynamics of cortical microtubules, mechanical properties of cell walls, or cell wall thickness were also not affected by hypergravity in the pth2 mutant. In other words, the pth2 mutant did not show any significant hypergravity responses. However, the gravitropic curvature of hypocotyls of the pth2 mutant was almost equal to that of the wild type, indicating that the PTH2 gene is not required for gravitropism. It is suggested by these results that PTH2 is responsible for the critical processes of gravity resistance in Arabidopsis hypocotyls.

9.
Plants (Basel) ; 11(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35161447

RESUMO

How microgravity in space influences plant cell growth is an important issue for plant cell biology as well as space biology. We investigated the role of cortical microtubules in the stimulation of elongation growth in Arabidopsis (Arabidopsis thaliana) hypocotyls under microgravity conditions with the Resist Tubule space experiment. The epidermal cells in the lower half of the hypocotyls of wild-type Columbia were longer in microgravity than at on-orbit 1 g, which precipitated an increase in the entire hypocotyl length. In the apical region, cortical microtubules adjacent to the outer tangential wall were predominantly transverse to the long axis of the cell, whereas longitudinal microtubules were predominant in the basal region. In the 9th to 12th epidermal cells (1 to 3 mm) from the tip, where the modification of microtubule orientation from transverse to longitudinal directions (reorientation) occurred, cells with transverse microtubules increased, whereas those with longitudinal microtubules decreased in microgravity, and the average angle with respect to the transverse cell axis decreased, indicating that the reorientation was suppressed in microgravity. The expression of tubulin genes was suppressed in microgravity. These results suggest that under microgravity conditions, the expression of genes related to microtubule formation was downregulated, which may cause the suppression of microtubule reorientation from transverse to longitudinal directions, thereby stimulating cell elongation in Arabidopsis hypocotyls.

10.
Methods Mol Biol ; 2368: 267-279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34647261

RESUMO

To understand gravity resistance in plants, it is necessary to analyze the changes induced when the magnitude of gravity in a growth environment is modified. Microgravity in space provides appropriate conditions for analyzing gravity resistance mechanisms. Experiments carried out in space involve a large number of constraints and are quite different from ground-based experiments. Here, we describe basic procedures for space-based experiments to study gravity resistance in plants. An appropriate cultivation chamber must be selected according to the growing period of the plants and the purpose of the experiment. After cultivation, the plant material is fixed with suitable fixatives in appropriate sample storage containers such as the Chemical Fixation Bag. The material is then analyzed with a variety of methods, depending on the purpose of the experiment. Plant material fixed with the RNAlater® solution can be used sequentially to determine the mechanical properties of the cell wall, RNA extraction (which is necessary for gene-expression analysis), estimate the enzyme activity of cell wall proteins, and measure the levels and compositions of cell wall polysaccharides. The plant material can also be used directly for microscopic observation of cellular components such as cortical microtubules.


Assuntos
Hipergravidade , Plantas , Ausência de Peso , Parede Celular , Microtúbulos , Voo Espacial
11.
J Plant Physiol ; 260: 153409, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33774509

RESUMO

Sugar accumulation in maize (Zea mays) coleoptile and mesocotyl cells was suppressed when etiolated seedlings were subjected to white light irradiation. Regulation mechanisms of sugar accumulation by light in cells of both organs were studied. Sucrose exudation from the endosperm was suppressed in light-treated seedlings. In addition, the activities and transcript levels of sucrose-phosphate synthase (SPS) in scutella were decreased following light irradiation. These results suggest that sucrose exudation from the endosperm is decreased by the suppression of SPS activities via downregulation of its gene expression. In coleoptiles and mesocotyls, light irradiation also decreased the activities and transcript levels of cell wall-bound invertase, suggesting that phloem unloading processes were suppressed. Thus, inhibition of both sucrose loading from the endosperm and sucrose unloading in coleoptiles and mesocotyls may be involved in the suppression of sugar accumulation in coleoptiles and mesocotyls irradiated with white light.


Assuntos
Cotilédone/metabolismo , Estiolamento , Luz , Sacarose/metabolismo , Zea mays/metabolismo , Plântula/metabolismo , Plântula/efeitos da radiação , Zea mays/efeitos da radiação
12.
Ecol Evol ; 10(21): 12183-12199, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33209280

RESUMO

Na+ and Cl- are the most abundant dissolved ions in seawater, constituting ~ 85% of total ions. They significantly affect the osmolality of body fluids of marine invertebrates. Seawater also contains minor ions such as Mg2+, Ca2+, K+, and SO4 2- , but their effects on marine organisms are unclear. This study analyzed the effects of Mg2+, Ca2+, and K+ (ambient minor cations) on survival, hemolymph ionic composition, and gene expression in the gills of three euryhaline crabs: Helice tridens, Macrophthalmus japonicus, and Chiromantes dehaani. Ambient minor cations were required for survival of H. tridens and M. japonicus under isosmotic conditions with seawater. The ambient minor cations also affected the osmolality and ionic composition of hemolymph by regulating expressions of specific genes in the gills required for Na+ uptake, such as Na+/K+ ATPase, cytoplasmic carbonic anhydrase, and Na+/H+ exchanger. Administration of carbonic anhydrase and Na+/H+ exchanger inhibitors increased the survival rate even if ambient minor cations did not exist. In contrast, under hypo-osmotic conditions, ambient minor cations had different effects on crabs, a lethal effect on M. japonicus, and an increase of the hemolymph K+ concentration in H. tridens and M. japonicus. It is thus concluded that the effects of ambient minor cations are osmolality-dependent. In contrast, in C. dehaani, the hemolymph ionic composition and survival rate were hardly affected by ambient minor cations, probably reflecting the habitat of this species. These results strongly indicated that C. dehaani is less susceptive to ambient minor cations compared to H. tridens and M. japonicus.

13.
J Plant Res ; 133(4): 571-585, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32424466

RESUMO

We have performed a seed-to-seed experiment in the cell biology experiment facility (CBEF) installed in the Kibo (Japanese Experiment Module) in the International Space Station. The CBEF has a 1 × g compartment on a centrifuge and a microgravity compartment, to investigate the effects of microgravity on the vegetative and reproductive growth of Arabidopsis thaliana (L.) Heynh. Seeds germinated irrespective of gravitational conditions after water supply on board. Thereafter, seedlings developed rosette leaves. The time of bolting was slightly earlier under microgravity than under space 1 × g. Microgravity enhanced the growth rate of peduncles as compared with space 1 × g or ground control. Plants developed flowers, siliques and seeds, completing their entire life cycle during 62-days cultivation. Although the flowering time was not significantly affected under microgravity, the number of flowers in a bolted plant significantly increased under microgravity as compared with space 1 × g or ground control. Microscopic analysis of reproductive organs revealed that the longitudinal length of anthers was significantly shorter under microgravity when compared with space 1 × g, while the length of pistils and filaments was not influenced by the gravitational conditions. Seed mass significantly increased under microgravity when compared with space 1 × g. In addition, seeds produced in space were found not to germinate on the ground. These results indicate that microgravity significantly influenced the reproductive development of Arabidopsis plants even though Earth's gravitational environment is not absolutely necessary for them to complete their life cycle.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ausência de Peso , Arabidopsis/crescimento & desenvolvimento , Reprodução , Sementes
14.
Plants (Basel) ; 9(5)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380659

RESUMO

Plants respond to and resist gravitational acceleration, but the mechanism of signal perception in the response is unknown. We studied the role of MCA (mid1-complementing activity) proteins in gravity perception by analyzing the expression of the MCA1 and MCA2 genes, and the growth of hypocotyls of mca mutants, under hypergravity conditions in the dark. An MCA1 promoter::GUS fusion reporter gene construct (MCA1p::GUS) and MCA2p::GUS were expressed almost universally in etiolated seedlings. Under hypergravity conditions, the expression levels of both genes increased compared with that under the 1 g condition, and remained higher, especially in the basal supporting region. On the other hand, mca-null and MCA-overexpressing seedlings showed normal growth under the 1 g condition. Hypergravity suppressed elongation growth of hypocotyls, but this effect was reduced in hypocotyls of mca-null mutants compared with the wild type. In contrast, MCA-overexpressing seedlings were hypersensitive to increased gravity; suppression of elongation growth was detected at a lower gravity level than that in the wild type. These results suggest that MCAs are involved in the perception of gravity signals in plants, and may be responsible for resistance to hypergravity.

15.
Astrobiology ; 20(7): 820-829, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32207981

RESUMO

The plant cell wall provides each cell with structural support and mechanical strength, and thus, it plays an important role in supporting the plant body against the gravitational force. We investigated the effects of microgravity on the composition of cell wall polysaccharides and on the expression levels of genes involved in cell wall metabolism using rice shoots cultivated under artificial 1 g and microgravity conditions on the International Space Station. The bulk amount of the cell wall obtained from microgravity-grown shoots was comparable with that from 1 g-grown shoots. However, the analysis of sugar constituents of matrix polysaccharides showed that microgravity specifically reduced the amount of glucose (Glc)-containing polysaccharides such as 1,3:1,4-ß-glucans, in shoot cell walls. The expression level of a gene for endo-1,3:1,4-ß-glucanase, which hydrolyzes 1,3:1,4-ß-glucans, largely increased under microgravity conditions. However, the expression levels of genes involved in the biosynthesis of 1,3:1,4-ß-glucans were almost the same under both gravity conditions. On the contrary, microgravity scarcely affected the level and the metabolism of arabinoxylans. These results suggest that a microgravity environment promotes the breakdown of 1,3:1,4-ß-glucans, which, in turn, causes the reduced level of these polysaccharides in growing rice shoots. Changes in 1,3:1,4-ß-glucan level may be involved in the modification of mechanical properties of cell walls under microgravity conditions in space.


Assuntos
Parede Celular/química , Oryza/crescimento & desenvolvimento , Ausência de Peso/efeitos adversos , Xilanos/metabolismo , beta-Glucanas/metabolismo , Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/enzimologia , Parede Celular/metabolismo , Endo-1,3(4)-beta-Glucanase/genética , Endo-1,3(4)-beta-Glucanase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/enzimologia , Oryza/genética , Brotos de Planta/química , Brotos de Planta/citologia , Brotos de Planta/enzimologia , Brotos de Planta/crescimento & desenvolvimento , Voo Espacial , Xilanos/isolamento & purificação , beta-Glucanas/isolamento & purificação
16.
Plant Signal Behav ; 13(1): e1422468, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29286875

RESUMO

The body shape of plants varied in proportion to the logarithm of the magnitude of gravity in the range from microgravity to hypergravity to resist the gravitational force. Here we discuss the roles of cortical microtubule and 65 kDa microtubule-associated protein-1 (MAP65-1) in gravity-induced modification of growth anisotropy. Microgravity stimulated elongation growth and suppressed lateral expansion in shoot organs, such as hypocotyls and epicotyls. On the other hand, hypergravity inhibited elongation growth and promoted lateral expansion in shoot organs. The number of cells with transverse microtubules was increased by microgravity, but decreased by hypergravity. Furthermore, the levels of MAP65-1, which is involved in the maintenance of the transverse microtubule orientation, were increased by microgravity, but decreased by hypergravity. Therefore, the regulation of orientation of cortical microtubules via changes in the levels of MAP65-1 may contribute to the modification of the body shape of plants to resist the gravitational force.


Assuntos
Hipergravidade , Microtúbulos/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Ausência de Peso , Arabidopsis/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Plantas Geneticamente Modificadas
17.
Physiol Plant ; 162(1): 135-144, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28862767

RESUMO

We carried out a space experiment, denoted as Aniso Tubule, to examine the effects of microgravity on the growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls, using lines in which microtubules are visualized by labeling tubulin or microtubule-associated proteins (MAPs) with green fluorescent protein (GFP). In all lines, GFP-tubulin6 (TUB6)-, basic proline-rich protein1 (BPP1)-GFP- and spira1-like3 (SP1L3)-GFP-expressing using a constitutive promoter, and spiral2 (SPR2)-GFP- and GFP-65 kDa MAP-1 (MAP65-1)-expressing using a native promoter, the length of hypocotyls grown under microgravity conditions in space was longer than that grown at 1 g conditions on the ground. In contrast, the diameter of hypocotyls grown under microgravity conditions was smaller than that of the hypocotyls grown at 1 g. The percentage of cells with transverse microtubules was increased under microgravity conditions, irrespective of the lines. Also, the average angle of the microtubules with respect to the transverse cell axis was decreased in hypocotyls grown under microgravity conditions. When GFP fluorescence was quantified in hypocotyls of GFP-MAP65-1 and SPR2-GFP lines, microgravity increased the levels of MAP65-1, which appears to be involved in the maintenance of transverse microtubule orientation. However, the levels of SPR2 under microgravity conditions were comparable to those at 1 g. These results suggest that the microgravity-induced increase in the levels of MAP65-1 is involved in increase in the transverse microtubules, which may lead to modification of growth anisotropy, thereby developing longer and thinner hypocotyls under microgravity conditions in space.


Assuntos
Anisotropia , Arabidopsis/crescimento & desenvolvimento , Meio Ambiente Extraterreno , Hipocótilo/crescimento & desenvolvimento , Microtúbulos/metabolismo , Ausência de Peso , Fluorescência , Hipocótilo/anatomia & histologia , Epiderme Vegetal/citologia , Plântula/crescimento & desenvolvimento
18.
Physiol Plant ; 161(2): 285-293, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28573759

RESUMO

We investigated the effects of microgravity environment on growth and plant hormone levels in dark-grown rice shoots cultivated in artificial 1 g and microgravity conditions on the International Space Station (ISS). Growth of microgravity-grown shoots was comparable to that of 1 g-grown shoots. Endogenous levels of indole-3-acetic acid (IAA) in shoots remained constant, while those of abscisic acid (ABA), jasmonic acid (JA), cytokinins (CKs) and gibberellins (GAs) decreased during the cultivation period under both conditions. The levels of auxin, ABA, JA, CKs and GAs in rice shoots grown under microgravity conditions were comparable to those under 1 g conditions. These results suggest microgravity environment in space had minimal impact on levels of these plant hormones in rice shoots, which may be the cause of the persistence of normal growth of shoots under microgravity conditions. Concerning ethylene, the expression level of a gene for 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, the key enzyme in ethylene biosynthesis, was reduced under microgravity conditions, suggesting that microgravity may affect the ethylene production. Therefore, ethylene production may be responsive to alterations of the gravitational force.


Assuntos
Oryza/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Ausência de Peso , Expressão Gênica , Ácidos Indolacéticos/metabolismo
19.
J Plant Physiol ; 191: 29-35, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26720211

RESUMO

We performed a phenotypic screening of confirmed homozygous T-DNA insertion lines in Arabidopsis for cell wall extensibility, in an attempt to identify genes involved in the regulation of cell wall mechanical properties. Seedlings of each line were cultivated and the cell wall extensibility of their hypocotyls was measured with a tensile tester. Hypocotyls of lines with known cell wall-related genes showed higher or lower extensibility than those of the wild-type at high frequency, indicating that the protocol used was effective. In the first round of screening of randomly selected T-DNA insertion lines, we identified ANTHOCYANINLESS2 (ANL2), a gene involved in the regulation of cell wall mechanical properties. In the anl2 mutant, the cell wall extensibility of hypocotyls was significantly lower than that of the wild-type. Levels of cell wall polysaccharides per hypocotyl, particularly cellulose, increased in anl2. Microarray analysis showed that in anl2, expression levels of the major peroxidase genes also increased. Moreover, the activity of ionically wall-bound peroxidases clearly increased in anl2. The activation of peroxidases as well as the accumulation of cell wall polysaccharides may be involved in decreased cell wall extensibility. The approach employed in the present study could contribute to our understanding of the mechanisms underlying the regulation of cell wall mechanical properties.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Parede Celular/genética , DNA Bacteriano/genética , Genes de Plantas , Proteínas de Homeodomínio/genética , Mutagênese Insercional/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenômenos Biomecânicos , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Peroxidase/metabolismo , Fenótipo , Folhas de Planta/metabolismo
20.
PLoS One ; 10(9): e0137992, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26378793

RESUMO

Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions.


Assuntos
Parede Celular/metabolismo , Parede Celular/fisiologia , Ácidos Cumáricos/metabolismo , Oryza/metabolismo , Oryza/fisiologia , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Lignina/metabolismo , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Fenômenos Fisiológicos/fisiologia , Polissacarídeos , Voo Espacial/métodos , Ausência de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...